Short communication: Effects of polyethylene glycol treatment on the chemical composition and in vitro dry matter degradability of Searsia lancea leaves
DOI:
https://doi.org/10.17159/sajas.v55i10.03Keywords:
browse species, nutritive value, ruminal fermentation, ruminants, tanninsAbstract
This study investigated the effects of incremental levels of polyethylene glycol (PEG) treatment on the chemical composition and in vitro dry matter degradability (IVDMD) of Searsia lancea leaves. Polyethylene glycol was sprayed onto S. lancea leaves at 0, 5, 10, 15, and 20 g/kg of dry matter (DM). Data were analysed using a one-way analysis of variance, while linear and quadratic responses were analysed using polynomial regression analysis. There were negative linear and quadratic effects on the crude protein (CP), neutral detergent fibre (NDF), total phenolic (TP), total tannin (TT), and condensed tannin (CT) concentrations in response to the incremental levels of PEG. Treatment with 20 g PEG/kg DM produced the lowest ether extract (EE), NDF, TP, TT, and CT concentrations. Magnesium showed a negative linear response to incremental levels of PEG, and treatment with 10 g PEG/kg DM produced the highest potassium, sodium, and sulphur concentrations. In vitro DM degradability at 36 hours showed a positive linear response to increasing levels of PEG, and 20 g PEG/kg DM resulted in the highest IVDMD. In conclusion, treating S. lancea leaves with incremental levels of PEG reduced the concentrations of CP, EE, NDF, TP, TT, and CT, while enhancing the IVDMD. Our results suggest that treatment with PEG at 20 g/kg may be most suitable for improving the nutritive value of S. lancea.
(Submitted 2 March 2025; Accepted 17 September 2025; Published 13 October 2025)
References
Agri Laboratory Association of Southern Africa (AgriLASA), 1998. Feed and Plant Analysis Methods. AgriLASA, Pretoria, South Africa.
ANKOM Technology, 2005. In vitro true digestibility using the Daisy II incubator. ANKOM Technology, Fairport, NY, USA.
Association of Official Analytical Chemists (AOAC), 2012. Official Methods of Analysis of AOAC International (16th edition). AOAC, Arlington, VA, USA.
Bhatta, R., Shinde, A.K., Vaithiyanathan, S., Sankhyan, S.K., & Verma, D.L., 2002. Effect of polyethylene glycol-6000 on nutrient intake, digestion and growth of kids browsing Prosopis cineraria. Animal Feed Science and Technology, 101(1–4):45–54. DOI: https://doi.org/10.1016/S0377-8401(02)00180-3 DOI: https://doi.org/10.1016/S0377-8401(02)00180-3
Byrne, L. & Murphy, R.A., 2022. Relative bioavailability of trace minerals in production animal nutrition: A review. Animals, 12(15):1981. DOI: https://doi.org/10.3390/ani12151981 DOI: https://doi.org/10.3390/ani12151981
Chuzaemi, S., Mashudi, M., Ndaru, P.H., Sudarwati, H., & Agustina, L.P., 2023. The effect of leguminous leaf meal substitution as a tannin source in complete feed on rumen degradable protein (RDP), rumen undegradable protein (UDP), and digestible energy (DE) using in vitro analysis. BIO Web of Conferences, 81:00043. DOI: https://doi.org/10.1051/bioconf/20238100043 DOI: https://doi.org/10.1051/bioconf/20238100043
Dentinho, M.T.P., Moreira, O.C., & Bessa, R.J., 2018. The use of polyethylene glycol to reduce the anti-nutritional effects of tannins in Cistus ladanifer L. Forest Systems, 27(1): e04S. DOI: https://doi.org/10.5424/fs/2018271-11991 DOI: https://doi.org/10.5424/fs/2018271-11991
Fagundes, G.M., Benetel, G., Santos, K.C., Welter, K.C., Melo, F.A., Muir, J.P., & Bueno, I.C.S., 2020. Tannin-rich plants as natural manipulators of rumen fermentation in the livestock industry. Molecules, 25(12):2943. DOI: https://doi.org/10.3390/molecules25122943 DOI: https://doi.org/10.3390/molecules25122943
Gundidza, M., Gweru, N., Mmbengwa, V., Ramalivhana, N.J., Magwa, Z., & Samie, A., 2008. Phytoconstituents and biological activities of essential oil from Rhus lancea L.F. African Journal of Biotechnology, 7(16):2787–2789. DOI: https://doi.org/10.4314/ajb.v7i16.59155
Hawu, O., Mokoboki, H.K., Lebopa, C.K., Mkhize, Z., & Ravhuhali, K.E., 2025. The proximate and secondary metabolites of the leaf fodder of Searsia species are affected by seasons in the North West province of South Africa. Agroforestry Systems, 99(4):79. DOI: https://doi.org/10.1007/s10457-025-01176-x DOI: https://doi.org/10.1007/s10457-025-01176-x
Hawu, O., Ravhuhali, K.E., Mokoboki, H.K., Lebopa, C.K., & Sipango, N., 2022. Proximate analysis, in vitro dry matter degradability and palatability index of legume residues and maize straws for ruminants. Legume Research – An International Journal, 45(5):601–607. DOI: https://doi.org/10.18805/LRF-663 DOI: https://doi.org/10.18805/LRF-663
Hoffmann, M.M., 2022. Polyethylene glycol as a green chemical solvent. Current Opinion in Colloid and Interface Science, 57:101537. DOI: https://doi.org/10.1016/j.cocis.2021.101537 DOI: https://doi.org/10.1016/j.cocis.2021.101537
IBM Corp., 2020. IBM SPSS Statistics for Windows, version 27.0. IBM Corp., Armonk, NY, USA.
Kemboi, F., Ondiek, J.O., King’ori, A.M., & Onjoro, P.A., 2023. Effects of polyethylene glycol (PEG 6000) and bentonite clay incorporation in selected local browse-based diets on the performance of Small East African goats. Tropical Animal Health and Production, 55(2):124. DOI: https://doi.org/10.1007/s11250-023-03545-z DOI: https://doi.org/10.1007/s11250-023-03545-z
Knowles, M.M., Pabón, M.L., Hess, H.D., & Carulla, J.E., 2017. Changes in in vitro ruminal and post‐ruminal degradation of tropical tannin‐rich legumes due to varying levels of polyethylene glycol. Animal Physiology and Animal Nutrition, 101(4):641–648. DOI: https://doi.org/10.1111/jpn.12610 DOI: https://doi.org/10.1111/jpn.12610
Mahlake, S.K. & Mnisi, C.M., 2020. Supplementation of grass (Eragrostis spp.) hay with Vachellia karroo leaves: effect on chemical composition and in vitro ruminal fermentation. Range Management and Agroforestry, 41(2):336–342.
Makkar, H.P., 2003. Quantification of Tannins in Tree and Shrub Foliage: a Laboratory Manual. Springer Science & Business Media, Berlin, Germany. DOI: https://doi.org/10.1007/978-94-017-0273-7
Matabane, A.N., Setou, B.A., Tshukudu, J.L., Nthinya, S.K., Mahlake, S.K., Mhlongo, G., Mbhele, F.G.T., & Mnisi, C.M., 2022. Effect of pre-treating green tea (Camellia sinensis) powder with graded levels of polyethylene glycol on chemical composition and in-vitro ruminal fermentation. Malaysian Journal of Animal Sciences, 25(1):1–12.
Matlabe, G., Mokoboki, H.K., Sebola, A.N., Lebopa, C.K., Ravhuhali, K.E., & Hawu, O., 2022. Effects of browse legume species addition on nutritional composition, fermentation characteristics and aerobic stability of Opuntia cladodes silage. South African Journal of Science, 118(3–4):1–6. DOI: https://doi.org/10.17159/sajs.2022/12032 DOI: https://doi.org/10.17159/sajs.2022/12032
Meissner, H.H., 2000. Nutrient supplementation of the grazing animal. In: Pasture Management in South Africa. Ed: Tainton, N.M., University of Natal Press, Pietermaritzburg, South Africa. pp. 96–115.
Mokoboki, H.K., Sebola, A.N., Ravhuhali, K.E., & Nhlane, L., 2019. Chemical composition, in vitro ruminal dry matter degradability and dry matter intake of some selected browse plants. Cogent Food and Agriculture, 5(1):1587811. DOI: https://doi.org/10.1080/23311932.2019.1587811 DOI: https://doi.org/10.1080/23311932.2019.1587811
Nyambali, A., Tjelele, J.T., Mndela, M., Mapiye, C., Strydom, P., Raffrenato, E., Dzama, K., Muchenje, V., & Mkhize, N., 2023. Participatory inventory and nutritional evaluation of local forage resources for smallholder free-range beef production in semi-arid areas of South Africa. African Journal of Range and Forage Science, 40(1):62–70. DOI: https://doi.org/10.2989/10220119.2022.2121941 DOI: https://doi.org/10.2989/10220119.2022.2121941
Orskov, E.R., 1982. Protein Nutrition in Ruminants. Academic Press, London, UK.
Porter, L.J., Hrstich, L.N., & Chan, B.G., 1985. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25(1):223–230. DOI: https://doi.org/10.1016/s0031-9422(00)94533-3 DOI: https://doi.org/10.1016/S0031-9422(00)94533-3
Ravhuhali, K.E., Mlambo, V., Beyene, T.S., & Palamuleni, L.G., 2020. Effects of soil type on density of trees and nutritive value of tree leaves in selected communal areas of South Africa. South African Journal of Animal Science, 50(1):88–98. DOI: https://doi.org/10.4314/sajas.v50i1.10 DOI: https://doi.org/10.4314/sajas.v50i1.10
Ravhuhali, K.E., Msiza, N.H., & Mudau, H.S., 2022. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agroforestry Systems, 96(1):23–33 DOI: https://doi.org/10.1007/s10457-021-00683-x DOI: https://doi.org/10.1007/s10457-021-00683-x
Ravhuhali, K.E., Mudau, H.S., Mokoboki, H.K., Moyo, B., & Motsei, L.E., 2023. Effect of harvesting site on mineral concentration of browse species found in semi-arid areas of South Africa. Journal of the Saudi Society of Agricultural Sciences, 22(3):165–173. DOI: https://doi.org/10.1016/j.jssas.2022.09.002 DOI: https://doi.org/10.1016/j.jssas.2022.09.002
Rojas Hernández, S., Olivares Pérez, J., Elghandour, M.M.M.Y., Cipriano-Salazar, M., Avila-Morales, B., Camacho-Díaz, L.M., Salem, A.Z.M., & A Cerrillo Soto, M., 2015. Effect of polyethylene glycol on in vitro gas production of some non-leguminous forage trees in tropical region of the south of Mexico. Agroforestry Systems, 89:735–742. DOI: https://doi.org/10.1007/s10457-015-9796-8 DOI: https://doi.org/10.1007/s10457-015-9796-8
SAS Institute, 2010. Users Guide: Statistics, version 9.3. SAS Institute, Cary, NC, USA.
Tshiambara, P., Lebopa, C.K., Mokoboki, H.K., Mudau, H.S., & Ravhuhali, K.E., 2024. Carbohydrase enzyme and polyethylene glycol altered the chemical composition, growth performance and apparent nutrient digestibility of Prosopis juliflora pods meal diets fed to Boschveld chicken breed. Veterinary and Animal Science, 26:100399. DOI: https://doi.org/10.1016/j.vas.2024.100399 DOI: https://doi.org/10.1016/j.vas.2024.100399
Van Soest, P.V., Robertson, J.B., & Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10):3583–3597. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Xie, B., Yang, X., Yang, L., Wen, X., & Zhao, G., 2021. Adding polyethylene glycol to steer ration containing sorghum tannins increases crude protein digestibility and shifts nitrogen excretion from feces to urine. Animal Nutrition, 7(3):779–786. DOI: https://doi.org/10.1016/j.aninu.2021.03.002 DOI: https://doi.org/10.1016/j.aninu.2021.03.002
Yisehak, K., De Boever, J.L., & Janssens, G.P.J., 2014. The effect of supplementing leaves of four tannin‐rich plant species with polyethylene glycol on digestibility and zootechnical performance of zebu bulls (Bos indicus). Journal of Animal Physiology and Animal Nutrition, 98(3):417–423. DOI: https://doi.org/10.1111/jpn.12068 DOI: https://doi.org/10.1111/jpn.12068
Downloads
Published
Data Availability Statement
Data presented in this study are available on request from the corresponding author
Issue
Section
License
Copyright (c) 2025 O. Hawu, O. Moagi, N. Sipango, H.K. Mokoboki, C.K. Lebopa, K.E. Ravhuhali (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
- Abstract 204
- PDF 87

